

Risikoadjustierung bei Indikatoren mit und ohne Patientenbefragungen

Das SMOR

Johannes Rauh

Fachbereich Medizinische Biometrie und Statistik Institut für Qualitätssicherung und Transparenz im Gesundheitswesen

26. September 2025

KCQ-Tagung Instrumente der Qualitätssicherung – Theorie und Praxis

26. September 2025 Hotel Aquino Berlin

Darlegung Interessenskonflikte

Hiermit erkläre ich, dass zu den Inhalten der Veranstaltung kein Interessenkonflikt vorliegt.

- 2. Schritte zur Risikoadjustierung
 - a) Wonach wollen wir adjustieren?
 - b) Wie messen wir den Einfluss von Risikofaktoren?
 - c) Wie wollen wir Leistungserbringerergebnisse adjustieren?
- 3. Das SMOR
- 4. Zusammenfassung

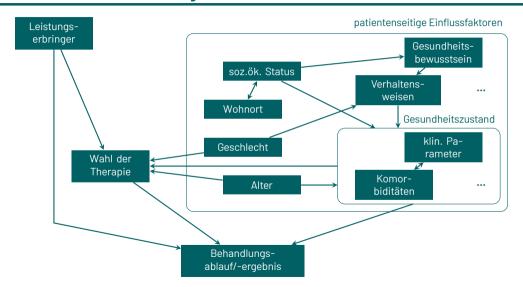
Risikoadjustierung

Ziel der Risikoadjustierung

Berücksichtigung von Unterschieden in der Zusammensetzung der Patientengruppen zwischen den verschiedenen Leistungserbringern, die einen Einfluss auf das Behandlungsergebnis haben.

Schritte zur Risikoadjustierung

- 1. Wonach wollen wir adjustieren?
- 2. Wie messen wir den Einfluss der patientenseitigen Einflussfaktoren?
- 3. Wie wollen wir Leistungserbringerergebnisse adjustieren?
 - → SMR und SMOR


0. Alternativen zur Adjustierung

- Nicht adjustieren
 - Beispiel: Bei vielen Prozessindikatoren wollen wir, dass Anforderungen unabhängig von Patienteneigenschaften eingehalten werden.
- 2. Einschränkung der Grundgesamtheit
 - Trifft das Qualitätsziel auf alle Patient:innen in der Grundgesamtheit gleichermaßen zu?
 - Ist der Einfluss des Leistungserbringers bei allen Patient:innen gleichermaßen gegeben?
 - Beispiele: prä-OP-Verweildauer, Sterblichkeit bei Palliativpatient:innen
- 3. Stratifizierung
 - getrennte Betrachtung verschiedener Grundgesamtheiten

1. Wonach wollen wir adjustieren? Theorie

- Ziel: Adjustierung nach patientenseitigen Einflussfaktoren.
- Ideale Risikofaktoren:
 - sind nicht durch den Leistungserbringer beeinflussbar,
 - haben einen direkten kausalen Einfluss auf das Behandlungsergebnis.

Das SMOR

2. Wie messen wir den Einfluss von Risikofaktoren?

- Standardvorgehen: statistische Schätzung des Einflusses der Risikofaktoren anhand einer Vergleichspopulation.
- Vergleichspopulation: Z.B. Gesamtheit aller Fälle bundesweit
 - in der Regel des Vorjahres (aus prozessualen Gründen)
 - gelegentlich mehrere Vorjahre
- Die Schätzung ist kein rein statistischer Schritt:
 - Variablenselektion mit inhaltlicher Plausibilisierung
- Ergebnis:
 - "Modellkoeffizienten": Quantifizierung des Einflusses der Risikofaktoren
 - ullet Zuordnung eines Risikos $e_{i,j}$ für Patient:in j bei Leistungserbringer i

3. Wie wollen wir Leistungserbringerergebnisse adjustieren?

Vom einzelnen Fall zum Leistungserbringer:

- Zutaten: Für jede Patient:in i bei Leistungserbringer i haben wir
 - das Outcome $o_{i,i}$
 - ein (geschätztes) Risiko e_{i, i}.
- Klassisches Vorgehen:
 - Beide Größen werden aufsummiert
 - $o_i = \sum_i o_{i,j}$ = beobachtete Anzahl¹ an interessierenden Outcomes,
 - $e_i = \sum_{i}^{j} e_{i,j}$ = erwartete Anzahl¹ an interessierenden Outcomes.
 - 2. Das Verhältnis o_i/e_i definiert das Indikatorergebnis (SMR: Standardized Mortality/Morbidity Ratio).

¹bei binären Outcomes

3. Wie wollen wir Leistungserbringerergebnisse adjustieren?

Vom einzelnen Fall zum Leistungserbringer:

- Zutaten: Für jede Patient:in i bei Leistungserbringer i haben wir
 - das Outcome o_{i i}
 - ein (geschätztes) Risiko e_{i, i}.
- Klassisches Vorgehen:
 - 1. Beide Größen werden aufsummiert
 - $o_i = \sum_i o_{i,j}$ = beobachtete Anzahl¹ an interessierenden Outcomes,
 - $e_i = \sum_{i}^{j} e_{i,j}$ = erwartete Anzahl¹ an interessierenden Outcomes.
 - 2. Das Verhältnis o_i/e_i definiert das Indikatorergebnis (SMR: Standardized Mortality/Morbidity Ratio).
 - Alternativen: Differenz $\frac{1}{n_i}(o_i e_i)$ oder Odds Ratio (SMOR): $\frac{o_i}{n_i o_i} / \frac{e_i}{n_i o_i}$

¹bei binären Outcomes

- Qualitätsindikatoren können unterschiedlich "gepolt"/"orientiert"/"gerichtet" sein:
 - Sind große Zahlenwerte gut oder schlecht?
- Tendenz:
 - Bei risikoadjustierten Indikatoren und Ergebnisindikatoren:
 - In aller Regel werden unerwünschte Ereignisse gezählt, z.B. Komplikationen. ⇒ Größere Werte sind dann schlecht.
 - Bei Prozessindikatoren:
 - Oft wird die Erfüllung von Vorgaben gezählt, z.B. Rechtzeitigkeit der Behandlung, Vollständigkeit der Diagnostik.
 - ⇒ Größere Werte sind dann aut.
 - Gelegentlich wird aber auch die Nichterfüllung gezählt.
 - Bei Patientenbefragungen (auch risikoadjustiert):
 - In den Indikatoren der DeQS-RL sind größere Werte stets gut.

Das SMR und die Richtung

 Man kann im Prinzip mit SMR-Indikatoren erwünschte oder unerwünschte Ereignisse zählen.

Das SMOR

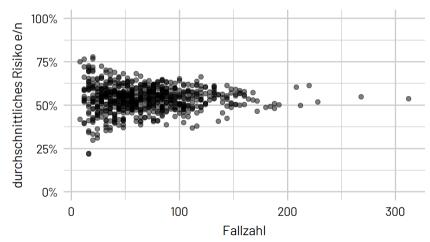
Man kann daher im Prinzip SMR-Indikatoren auch "umpolen":

$$\frac{o_i}{n_i} \iff \frac{n_i - o_i}{n_i - e_i}$$

Dabei ändert sich aber die Rangfolge von Ergebnissen.

	n_i	e_i	o_i	SMR	$n_i - e_i$	$n_i - o_i$	SMR umgepolt
KH1	10	1,0	2	<mark>2,00</mark>	9,0	8	0,889
KH2	10	1,6	3	1,88	8,4	7	0,833

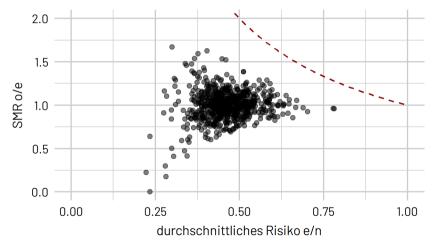
Das SMR und die Häufigkeit


- Das SMR ist gut interpretierbar bei geringen Häufigkeiten.
 - Dies ist auch der Standardfall in der externen Qualitätssicherung:
 - Fokus auf seltenen unerwünschten Ereignissen, Detektion von schlechter Qualität.
- Bei großen Häufigkeiten ist der eingeschränkte Wertebereich zu beachten:

$$0 \le \frac{o_i}{e_i} \le \frac{n_i}{e_i}.$$

ullet Beispiel: Bei einem Leistungserbringer mit $e_i=0.5\cdot n_i$ ist das SMR nie größer als 2.

Beispiel aus der Patientenbefragung PCI


OI:, keine Verbesserung der Symptomschwere bei elektiver PCI'

Das SMOR DESCRIPTION OF THE PERSON OF T

Beispiel aus der Patientenbefragung PCI

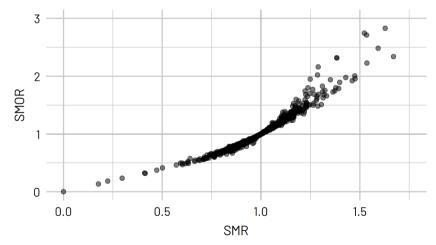
OI:, keine Verbesserung der Symptomschwere bei elektiver PCI'

Das SMOR THE RESERVE

Das SMOR - Standardized Mortality/Morbidity Odds Ratio

Definition

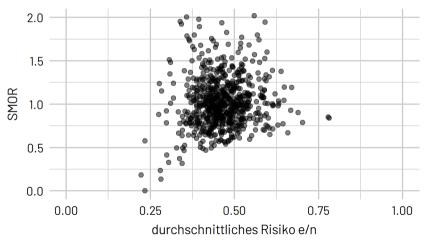
$$\mathrm{SMOR}_i = \frac{o_i}{n_i - o_i} / \frac{e_i}{n_i - e_i} = \frac{o_i}{e_i} / \frac{n_i - o_i}{n_i - e_i} \;.$$


Das SMOR

	n_i	e_i	o_i	SMR	SMR umgepolt	SMOR
KH1	10	1.0	2	2,00	0,889	2.25
KH2	10	1.6	3	1,88	0,833	2.25

Eigenschaften des SMOR

- Gute Vergleichbarkeit und Interpretation der Ergebnisse bei kleiner und großer Prävalenz.
- Verhalten bei Umpolung: SMOR ⇔ 1/SMOR
- Interpretation analog zum Odds Ratio
 - SMR entspricht eher einem relativen Risiko.
- Bei kleiner Prävalenz gilt SMOR ≈ SMR.
 - Bei großer Prävalenz gilt (1 / SMOR) ≈ SMR nach Umpolung.
- SMR $> 1 \Leftrightarrow$ SMOR $> 1 \Leftrightarrow$ SMR umgepolt < 1.
 - D.h. unterdurchschnittlich bleibt unterdurchschnittlich.


OI:, keine Verbesserung der Symptomschwere bei elektiver PCI'

Das SMOR

Beispiel aus der Patientenbefragung PCI

OI:, keine Verbesserung der Symptomschwere bei elektiver PCI'

Das SMOR THE RESIDENCE

Zusammenfassung

- Das SMOR ist eine Möglichkeit, Qualitätsindikatoren zu risikoadjustieren.
- Bei häufigeren Ereignissen verhält es sich besser als das SMR.

Hinweise:

- In der Anwendung ist der Beispiel-Ol anders gepolt (große Werte sind besser).
- Berücksichtigung von Unsicherheit: In diesem Vortrag wurde vernachlässigt, dass bei der Interpretation von Ergebnissen von Qualitätsindikatoren Unsicherheit berücksichtigt werden muss.
 - Ziel ist in der Regel eine Aussage über die zugrunde liegende Qualität, insbesondere auch in Hinblick auf zukünftige Patient:innen.

- Zur Auswertungsmethodik für Qualitätsindikatoren der Patientenbefragung: https: //iqtiq.org/veroeffentlichungen/auswertungsmethodik-qi-patientenbefragungen/
- Zum Verfahren OS PCI: https://igtig.org/gs-verfahren/gs-pci
- N. Keiding, D. Clayton, "Standardization and Control for Confounding in Observational Studies: A Historical Perspective." Statist. Sci., 2014
- A. Huitfeldt et al., "Shall we count the living or the dead?", arXiv, https://arxiv.org/abs/2106.06316, 2022